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Abstract

The e}ect of anisotropy on transport phenomena in anisotropic porous media is studied in this paper[ For convenience\

a bank of circular cylinders which can be treated as an anisotropic porous medium is employed such that both Darcy!

Forchheimer drag and e}ective thermal conductivity can be accurately determined[ Two problems including a forced

~ow and a natural convection are illustrated to investigate the e}ect of anisotropy on ~uid ~ow and heat transfer

through a bank of circular cylinders[ The solutions reveal that inclination of the cylinder bundle could give rise to an

in~uence of more than 099) on the heat transfer rate for both forced convection and natural convection[ Hence\ the

anisotropy of an anisotropic porous medium should not be ignored[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Nomenclature

cp speci_c heat ðJ kg−0 K−0Ł

d granule size of the porous medium ðmŁ

F Forchheimer coe.cient\ equation "7a#

` gravity ð8[795 m s−1Ł

Grc characteristic Grashof number\ b`DTL:V1
c

H width of a channel or a square enclosure ðmŁ

K permeability of a porous medium ðm1Ł

k thermal conductivity ðW m−0 K−0Ł

L characteristic length ðmŁ

l row spacing of the cylinder bank ðmŁ

m¾ mass ~ow rate ðkg s−0Ł

PÞ pressure on the super_cial ~ow ðN m−1Ł

p¹ dimensionless pressure\ PÞ:"rfV
1
c #

Pec characteristic Peclet number\ VcL:af

Pr Prandtl number\ n:af

Q heat transfer from the heating plate ðW m−0Ł

q dimensionless heat transfer rate\ equations "13# and "29#

Rxx\ Rxy\ Ryx\ Ryy dimensionless tensor of DarcyÐ

Forchheimer drag

Ra Rayleigh number\ b`DTH2:af n

Re Reynolds number\ UmH:n

Rec characteristic Reynolds number\ VcL:n

"Red#00 granule Reynolds number\ =UÞ00=d:n

� Corresponding author[

T temperature ðKŁ

To\ T� some constant temperatures ðKŁ

"UÞ\ VÞ# super_cial velocity ðm s−0Ł

"u¹\ v¹# dimensionless super_cial velocity

U¹ m mean velocity\ m¾ :"rfH#

Vc characteristic velocity ðm s−0Ł

W heating length in the forced convection case ðmŁ

"X\ Y# coordinate system ðmŁ

"x\ y# dimensionless coordinates\ "X:L\ Y:L#[

Greek symbols

a thermal di}usivity ðm1 s−0Ł

b volumetric thermal expansion ðK−0Ł

DT characteristic temperature ðKŁ

o porosity

u dimensionless temperature\ "T−T�#:DT

k dimensionless thermal conductivity\ k:kf

kxx\ kxy\ kyx\ kyy tensor of e}ective thermal conductivity

m dynamic viscosity ðN s m−1Ł

n kinematic viscosity ðm1 s−0Ł\ m:r

r density ðkg m−2Ł

s thermal conductivity ratio\ ks:kf

f inclination angle of the cylinders ðdegŁ

c stream function\ equation "18#[

Subscripts

00\ 11\ 22 tensor indexes in principal coordinates

c characteristic
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f ~uid

max maximum

min minimum

ref reference

s solid[

0[ Introduction

Fluid ~ow and heat transfer through anisotropic

porous media _nd many applications in industry and

in nature[ However\ the permeability of porous media

depends very strongly on its microstructure ð0Ł[ This leads

to a great di.culty in the determination of the DarcyÐ

Forchheimer drag for random heterogeneous porous

media\ especially when they are macroscopically aniso!

tropic[ Thus\ the literature dealing with the anisotropic

e}ect in anisotropic porous media are very limited[

In his study\ Poirier ð1Ł modelled a bank of circular

cylinders as an anisotropic porous medium[ A correlation

from the available experimental data was obtained for

the principal permeabilities "K00 and K11# that were par!

allel and normal to the cylinders[ However\ Poirier|s cor!

relation was restricted to a porosity of the range

9[08 ¾ o ¾ 9[55\ while the error of the correlation could

be as large as 32)[ Based on a simpli_ed form of Poirier|s

correlation\ Sinha et al[ ð2Ł found that the anisotropic

e}ect of the dendrites was signi_cant in alloy sol!

idi_cation if the extent of the mushy zone was large or if

the Rayleigh number was high[ To investigate the aniso!

tropic e}ect\ Yoo and Viskanta ð3Ł assumed the principal

permeability K00 was of the BlakeÐKozeny type[

However\ a value was assigned to the permeability ratio

"K11:K00# due to the lack of appropriate information[ The

in~uence of the anisotropy on the transport phenomena

thus was not properly observed[

Many attempts were also undertaken to improve the

upper and lower bounds for the permeability of some

particular porous media ð0Ł[ Logically\ porous media of

the same porosity could have entirely di}erent

permeability[ For instance\ for a ~ow across a bank of

circular cylinders that can be treated as a porous medium\

it is possible to achieve a zero permeability in one direc!

tion "say X# at a given porosity o by letting the clearance

of the cylinders be zero in the other direction "say Y#[

Narrow bound widths thus are not expected for most

microstructures discussed in the review ð0Ł[ As a result\

the estimated bounds could be too divergent to have

utility in practical applications[

It should be pointed out here that many porous media

possess a de_nite and regular microstructure especially

for that from industry[ Fluid ~ow and heat transfer

through a cylinder "tube# bundle is one of the examples[

The purpose of the present study is to investigate the

e}ect of the anisotropy on ~uid ~ow and heat transfer

through an anisotropic porous medium[ For simplicity\

a bank of circular cylinders is employed such that both

principal permeability and e}ective thermal conductivity

can be accurately determined[ Two examples including a

forced ~ow and a natural convection will be conducted to

study the anisotropic e}ect on the transport phenomena[

1[ Theoretical analysis

Consider a ~uid ~ow and heat transfer through an

anisotropic porous medium of homogeneous porosity o[

All of the thermophysical properties are constant[ The

~ow is assumed steady\ laminar\ incompressible and

macroscopically two!dimensional[ The solid phase has

reached thermal equilibrium with the ~uid phase[ The

coordinates are properly arranged such that the gravity

is in the −y direction[ After introducing the Boussinesq

approximation and the dimensionless transformation

u¹ � UÞ:Vc\ v¹ � VÞ:Vc\ x � X:L\ y � Y:L\

p¹ � PÞ:"rfV
1
c #\ k � k:kf\ af �"k:rcp#f\

u � "T−T�#:DT\ Rec � VcL:n\

Grc � b`DT L:V1
c \ Pec � VcL:af "0#

the governing equations become ð2Ð7Ł

1u¹

1x
¦

1v¹

1y
� 9 "1#

0

o 0u¹
1u¹

1x
¦v¹

1u¹

1y1� −o
1p¹

1x
¦

0

Rec 0
11u¹

1x1
¦

11u¹

1y11
−o

0

Rec 0
L

d1
1

"Rxxu¹¦Rxyv¹# "2#

0

o 0u¹
1v¹

1x
¦v¹

1v¹

1y1� −o
1p¹

1y
¦

0

Rec 0
11v¹

1x1
¦

11v¹

1y11
−o

0

Rec 0
L

d1
1

"Ryxu¹¦Ryyv¹#¦o Grc "u−uref# "3#

Pec 0u¹
1u

1x
¦v¹

1u

1y1�
1

1x 0kxx

1u

1x1¦
1

1x 0kxy

1u

1y1
¦

1

1y 0kyx

1u

1x1¦
1

1y 0kyy

1u

1y1 "4#

where Vc\ L and DT are respectively the characteristic

velocity\ the characteristic length and the characteristic

temperature\ while T� denotes a temperature level[ The

notation "UÞ\ VÞ# denotes the super_cial velocity[ The gran!

ule size of the porous medium d:L\ the characteristic

Reynolds number Rec\ the characteristic Grashof number

Grc and the characteristic Peclet number Pec are to be

de_ned for each individual problem[ The dimensionless
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tensor of the DarcyÐForchheimer drag Rxx\ Rxy\ Ryx\ Ryy

will be discussed later[

It should be noted that the inertia term in equations

"2# and "3# and the heat convection term in equation "4#

are based on the super_cial velocity of the ~uid because

the solid is stationary[ The second term on the right hand

side of the momentum equations represents the viscous

force arising from the ~uid!to!~uid interaction ð6\ 7Ł[ It

would vanish in a region where the super_cial velocity is

uniform[ However\ this particular term could be always

considerable in the wall regions where the super_cial

velocity possesses a sharp variation due to the no!slip

condition[ In addition\ they should govern the drag force

alone when the system of governing equations "1#Ð"4# is

directly applied on the pure ~uid region by assigning

o � 0[ Under such a situation\ the DarcyÐForchheimer

drag disappears and the system of governing equations

becomes that for a single phase problem ð6\ 7Ł[ Hence\

the ~uid!to!~uid viscosity term should be simply pro!

portional to the viscosity of the ~uid m as found by Gane!

san and Poirier ð5Ł after a rigorous derivation[ The widely

adopted assumption ð4\ 8Ł that the ~uid!to!~uid inter!

action term could have an {e}ective| viscosity di}erent

from the molecular viscosity m is not evident[

In the present study\ the bank of circular cylinders is

modeled as an orthotropic medium[ Thus\ the tensor of

the DarcyÐForchheimer drag Rxx\ Rxy\ Ryx\ Ryy appearing

in the system of equations "1#Ð"4# can be evaluated from

ð09Ð01Ł

Fig[ 0[ A schematic sketch for a ~uid ~ow through a bank of circular cylinders[

Rxx �
0

1
"R00¦R11#¦

0

1
"R00−R11# cos"1f#

Rxy � Ryx �
0

1
"R00−R11# sin"1f#

Ryy �
0

1
"R00¦R11#−

0

1
"R00−R11# cos"1f# "5#

where R00 and R11 denote the DarcyÐForchheimer drag

in the principal axes of the anisotropic porous medium

respectively parallel and normal to the cylinders[ In this

connection\ f is the angle between the principal axis 00

and the physical ordinate x[

Recently\ Lee and Yang ð02Ł solved the ~uid ~ow

across a bank of circular cylinders in pore scale[ The

velocity then was integrated to yield a modelling for the

DarcyÐForchheimer drag in the form

R11 � 0
d1

K
¦F Red111

"6a#

"Red#11 � =UÞ11 =d :n "6b#

The Forchheimer drag "F Red#11 was found to arise from

the form drag on the surfaces of the cylinders[ In the

present study\ this same technique is employed to evalu!

ate the DarcyÐForchheimer drag for ~uid ~ow parallel

to a bank of circular cylinders as illustrated in Fig[ 0[

Due to the particular geometry\ only the ~ow inside a

unit cell "with area l×l# is solved on a Cartesian grid

system as shown in _g[ 1 of ref [ ð02Ł[ Diameter of the
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cylinders d is assigned as the granule size of the porous

medium[ The resulting DarcyÐForchheimer drag R00 is

found independent of the granular Reynolds number

"Red#00 due to the absence of the form drag[ The cor!

relation

R00 � 0
d1

K
¦F Red100

"7a#

F00 � 9 "7b#

d1

K00

� −"7[83−006[0o¦80[15o1#
"0−o#0[2

o2
"8a#

o � 0−
p

7 0
d

l1
1

"8b#

_ts the computed R00 within a maximum error of less than

4) for all of the possible porosities "9[1035 ¾ o ¾ 0#[

Similarly\ tensor of the e}ective thermal conductivity

needed in equation "4# is expressible as

kxx �
0

1
"k00¦k11#¦

0

1
"k00−k11# cos"1f#

kxy � kyx �
0

1
"k00−k11# sin"1f#

kyy �
0

1
"k00¦k11#−

0

1
"k00−k11# cos"1f# "09#

For a particular porous matrix such as the bank of cir!

cular cylinders under study\ the principal thermal con!

ductivities k00 and k11 can be e}ectively determined by a

numerical procedure proposed in ref[ ð03Ł[ For instance\

to determine the e}ective thermal conductivity across the

cylinders "k11#\ one solves a heat conduction problem in

pore scale with a given temperature di}erence in the

principal direction 11[ The pore scale temperature as well

as the pore scale heat ~ux then is integrated over cross!

sections normal to the principal axis 11[ Finally\ deter!

mine the e}ective thermal conductivity k11 from the ratio

of the averaged heat ~ux and the gradient of the average

temperature[ The other principal thermal conductivity k00

can be found similarly[ For convenience\ the numerical

results of k00 and k11 are correlated by

k00 � o¦"0−o#s

� s¦"0−s#o "00#

k11 � kref f"o\ s#

kref � 0−
z1

1 0
d

l1¦s0
d

l1 $"0−s#
d

l
¦z1s%

−0

f"o\ s# � 0¦a"0−o# tan−0" ln s#¦b"0−o#1 tan−0" ln s#

"01#

s � ks:kf

d

l
� z7"0−o#:p

a � −9[90262¦9[0441 tan−0" ln s−2[1#

b � −9[4425−9[2802 tan−0" ln s−1[4# "02#

The correlations "00# and "01# are found to make a good

approximation to the computed k00 and k11 with a

maximum error of less than 4) for 9[1035 ¾ o ¾ 0 and

s − 0[ In the present study\ the granule Peclet number

"Pr Red# is not large such that e}ect of thermal dispersion

is neglected ð00Ł[

It is interesting to note that for isotropic porous media\

the Forchheimer coe.cients F00\ F11\ and F22 are deter!

mined by the same function of o and Red[ In their study\

Lee and Yang ð02Ł found that the Forchheimer drag "F

Red# in a direction depended on the velocity component

in the same direction[ This implies that the granule Rey!

nolds numbers for a three!dimensional super_cial vel!

ocity "UÞ00\ UÞ11\ UÞ22# should be evaluated from

"Red#00 � =UÞ00 =d:n "03a#

"Red#11 � =UÞ11 =d:n "03b#

"Red#22 � =UÞ22 =d:n "03c#

As a result\ the DarcyÐForchheimer drag "R00\ R11\ R22#

could be anisotropic even when the matrix of the porous

medium is geometrically isotropic[ Such a _nding is con!

sistent with Kaviany|s suggestion ð01Ł[ In many previous

investigations "e[g[ ð4Ł# the granule Reynolds number for

the Forchheimer drag was de_ned on the basis of =V
ł
=\

i[e[\

"Red#00 � "Red#11 �"Red#22

� "UÞ1
00¦UÞ1

11¦UÞ1
22#

0:1d:n "04#

The assumption of {isotropic granule Reynolds numbers|

obviously ignores the in~uence of the di}erent velocity

components when UÞ00 � UÞ11 � UÞ22\ and thus is ques!

tionable in nature[

2[ Forced ~ow through an anisotropic porous medium

Consider an incompressible laminar ~ow through a

channel formed with two parallel ~at plates of in_nite

length[ The channel is blocked by a bank of circular

cylinders of diameter d[ The cylinders are staggered and

possess the directional angle "f\ 89>−f\ 89># as shown

in Fig[ 1[ Such a directional angle will be referred to as

{an inclination angle f? in the present study for simplicity[

Let ~uid enter the channel with a uniform temperature

T� at X � −�\ while both plates are perfectly insulated

except for T"X\ 9# � To on the heating surface

9 ¾ X ¾ W and Y � 9[ Natural convection is assumed

negligible[ The row spacing of the cylinders "l# is very

small as compared to the width of the channel "H# such

that the cylinders can be modelled as an anisotropic

porous medium[ All of the thermophysical properties are

constant[ Physically\ the ~uid ~ow in the present forced
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Fig[ 1[ Top view and front view of the ~ow con_guration in the forced convection example[

convection problem would be momentum fully developed

throughout the channel "i[e[ 1u¹:1x � 9 and thus v¹ � 9

and 1p¹:1x is constant#[ Based on these and the following

de_nitions

Vc � Um\ L � H\ Um � m¾ :"rfH#\ DT � To−T�\

Rec � UmH:n � Re\ Grc � 9\ Pr � n:af\

Pec � Pr Re "05#

the set of governing equations "2#Ð"4# reduces to

9 � Re
1p¹

1x
¦0

H

d 1
1

Rxxu¹−
0

o

11u¹

1y1
"06#

9 � Re
1p¹

1y
¦0

H

d 1
1

Ryxu¹ "07#

Pr Re u¹
1u

1x
�

1

1x 0kxx

1u

1x1¦
1

1x 0kxy

1u

1y1
¦

1

1y 0kyx

1u

1x1¦
1

1y 0kyy

1u

1y1 "08#

where the DarcyÐForchheimer drag Rxx and Ryx and the

thermal conductivities kxx\ kxy\ kyx and kyy should be

evaluated from equations "5#Ð"02# based on the granule

Reynolds number

"Red#11 � = sin f u¹ =Re 0
d

H1 "19#

while the associated boundary conditions are

u¹ "x\ 9# � u¹ "x\ 0# � 9 "10#

and

u"−�\ y# � 9\ 1u"�\ y#:1x � 9\ 1u"x\ 0#:1y � 9\

1u"x\ 9#:1y � 9 for x ³ 9 and x × 0\

u"x\ 9# � 0 for 9 ¾ x ¾ 0[ "11#

Next\ estimate a value for the pressure gradient

"1p¹:1x � constant# and solve the ordinary di}erential

equation "06# along with the boundary conditions "10#

such that the conservation law

g
0

9

u¹ dy � 0 "12#

is satis_ed[ Once the super_cial velocity u¹ is known\ the

pressure distribution p¹ "x\ y# is determined from equation

"07#\ and the temperature u"x\ y# is solved from the energy

equations "08# and "11# by using the weighting function

scheme ð04\ 05Ł[ Finally\ the dimensionless heat transfer

rate is evaluated from

q �
Q

kfDT
� −kyy g

0

9

1u"x\ 9#

1y
dx "13a#

or
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q � Pr Re g
0

9

u¹ "y#u"�\ y# dy "13b#

In the present example\ numerical computations were

performed for various inclination angle f and Reynolds

numbers Re under the parameters "Pr\ s\ o\ H:d\

W:H# �"6\ 09\ 9[5\ 19\ 0#[ The discrepancy between the

heat transfer rates computed from equation "13a# and

"13b# was found less than 9[90)[ Numerical results of

isobars\ super_cial velocity u¹ and isotherms are depicted

in Fig[ 2 for Re � 0 and f � 9\ 34\ 89 and 024> with the

increments Dp¹ � 4999 and Du � 9[0[ For convenience\

the detailed velocity pro_le u¹ "y# in the wall region

"y ¾ 9[94# is provided in Fig[ 3 for f � 9\ 29\ 59 and 89>[

From the isobars of Fig[ 2\ one sees that the pressure

gradient has a minimum value at f � 9> and possesses a

maximum at f � 89>[ Due to a stronger DarcyÐForch!

heimer drag\ the velocity pro_le at f � 89> is slightly

~atter than that of f � 9> as observable from Fig[ 3[ It

is interesting to note from Fig[ 2 that for 9³ f ³ 89>

"say f � 34># the pressure has a negative gradient to the

lower!right so as to overcome a greater DarcyÐForch!

heimer drag across the cylinders "R11# while a fully

developed ~ow "v¹ � 9# is maintained[ Similar phenom!

enon occurs for 89 ³ f ³ 079> because of geometrical

symmetry[

Fig[ 2[ Isobars "Dp¹ � 4999#\ super_cial velocity u¹ "y# and isotherms "Du � 9[0# for the forced convection at Re � 0 and f � 9\ 34\ 89

and 024>[

Fig[ 3[ Velocity pro_les in the wall region of the forced ~ow at

Re � 0 and f � 9\ 29\ 59 and 89>[

In the present computation\ the thermal conductivity

ratio s � ks:kf is as large as 09[ The anisotropic thermal

conductivity thus could have a great in~uence on the heat
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Fig[ 4[ Heat transfer rate q as a function of f for the forced

convection at various Reynolds numbers[

transfer rate q[ As observable from Fig[ 2"b# and "d#\ the

upstream heat conduction in the case of f � 024> is more

pronounced than that in the case of f � 34>\ while both

cases have the same velocity u¹ "y#[ As a result\ the case of

f � 024> has a lower mean temperature in the down!

stream region and thus possesses a smaller heat transfer

rate q "see equation "13b##[

Figure 4 shows the heat transfer rate q as a function of

inclination angle f at various Reynolds numbers under

the parameters "Pr\ s\ o\ H:d\ W:H# �"6\ 09\ 9[5\ 19\ 0#[

The maximum heat transfer rate at each Reynolds num!

ber is denoted by the dashed curve[ As mentioned in the

preceding paragraph\ an inclination angle f of less than

89> has a smaller upstream heat conduction and thus a

larger heat transfer rate q as compared to the inclination

angle "079>−f#[ This might account for the fact that the

maximum heat transfer rate occurs at a certain incli!

nation angle below 89>[ As expected\ the function q"f^

Re# becomes symmetrical with respect to f � 89> when

the Reynolds number is su.ciently large such that the

forced convection dominates the heat transfer[ Never!

theless\ the value "qmax:qmin−0# increases as the Reynolds

number increases[ It could be even larger than one hun!

dred percent as can be seen from Fig[ 4[ Therefore\ the

anisotropy of an anisotropic porous medium could be

always very important[

3[ Natural convection through an anisotropic porous

medium

Consider an anisotropic porous medium inside a

square enclosure fully _lled with a ~uid[ Both horizontal

walls of the enclosure are insulated while the two vertical

walls at X � 9 and X � H are maintained respectively at

the uniform temperatures To and T�[ The anisotropic

porous medium is formed by the same bank of circular

cylinders as in the previous example "Fig[ 1#[ After intro!

ducing the de_nitions

L � H\ Vc � af:H\ DT � To−T�\ Pr � n:af

Ra � b`DTH2:"afn# "14#

the governing equations are expressible as equations "1#Ð

"4# with the parameters

0:Rec � Pr\ Grc � Pr Ra\ Pec � 0 "15#

The associated boundary conditions are

u"9\ y# � u"0\ y# � u"x\ 9# � u"x\ 0# � 9

v"9\ y# � v"0\ y# � v"x\ 9# � v"x\ 0# � 9

u"9\ y# � 0 u"0\ y# � 9\ 1u"x\ 9#:1y � 9

1u"x\ 0#:1y � 9 "16#

The granule Reynolds number "Red#11 dealing with the

principal DarcyÐForchheimer drag R11 should be evalu!

ated from

"Red#11 � =UÞ11 =d:n � = sinf u¹− cosf v¹ =
0

Pr

d

H
"17#

The principal Darcy drag R00 and the principal e}ective

thermal conductivities k00 and k11 are the same as that of

the forced ~ow illustrated in the previous section[

Numerical results including the super_cial velocity\ the

pressure and the temperature were obtained for the par!

ameters "Ra\ Pr\ s\ o\ H:d# �"096\ 6\ 09\ 9[5\ 39# at various

inclination angles f[ Upon knowing the super_cial vel!

ocity and the temperature\ the stream function was com!

puted from

c � g
y

9

u¹ dy "18a#

and

c � −g
x

9

v¹ dx "18b#

while the heat transfer rate was evaluated from

q �
Q

kfDT
� −kxx g

0

9

1u"9\ y#

1x
dy "29#

All of the computations were performed on a Cartesian

grid system with Dx � Dy � 9[91 by using the weighting

function scheme ð04\ 05Ł and the NAPPLE algorithm

ð06Ł[ A further reduction on the grid size did not show

signi_cant in~uence on the numerical solution[ In

addition\ the resulting stream function based on equation

"18a# was found to agree with that from equation "18b#

at a maximum discrepancy of less than 9[90)[ This is a

proof on the correctness of the present computations[

Numerical results of isotherms and streamlines are pre!

sented in Fig[ 5 for the four representative inclination
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Fig[ 5[ Isotherms and streamlines "Du � 9[0 and Dc � 9[4# for the natural convection with f � 9\ 34\ 89 and 024>[

angles f � 9\ 34\ 89 and 024>[ For each of the four cases\

the isotherms vary from u � 0 on the left wall "x � 9# to

u � 9 on the right wall "x � 0# with an increment of

Du � 9[0[ Similarly\ the streamlines decrease from c � 9

on the sold walls toward the center of the square enclos!

ure with an increment of Dc � 9[4[ This implies the exis!

tence of a minimum stream function c � cmin ³ 9[ Note

that negative stream function means a clockwise vortex[

Thus\ the value of −cmin makes a good measure for the

strength of a natural convection[ For convenience\ the

value of −cmin along with the heat transfer rate "q# is

shown in Fig[ 6 as functions of f[ The heat transfer rate

under pure heat conduction situation "Ra � 9# also is

provided in Fig[ 6 as a reference[

It is well!known that in a conventional natural con!

vection inside a square enclosure "without an anisotropic

porous medium# the streamlines are slightly elliptic with

the long axis lying in the direction of 34> due to the

growth of the boundary layers along both vertical walls[

The strongest circulating ~ow in the present problem thus

occurs at this particular inclination angle of f � 34> due

to the smallest DarcyÐForchheimer drag\ see Figs 5"b#

and 6[ Note also that large DarcyÐForchheimer drag near

the horizontal walls "y � 9 and y � 0# could signi_cantly

retard the ~ow because there is no driven force[ In the

range of inclination angles 89 ³ f ³ 079>\ the DarcyÐ

Forchheimer drag on both horizontal walls thickens the

boundary layer and thus weakens the circulation ~ow as

observable from Figs 5"c#\ 5"d# and 6[

Again\ the thermal conductivity ratio s in this example

is as large as 09[ Under such a situation\ the horizontal

cylinders in the case of f � 9> "also 079># make good

{bridges| for the heat ~ow from the hot wall to the cold

wall[ In contrast\ the heat ~ow in the case of f � 89>

should go across the ~uid region that possesses a low

Fig[ 6[ Strength "−cmin# and heat transfer rate "q# of the natural

convection at various inclination angles[

conductivity[ Hence\ the best and the worst heat transfer

rates occur respectively at an inclination angle near

f � 054> and f � 79> "see Fig[ 6#[ It is interesting to

note from Fig[ 5 that due to its elliptic streamlines the

inclination angle of f � 34> has a smaller temperature

gradient "−1u:1x# on the vertical walls than does the

inclination angle f � 024>[ As a result\ the heat transfer

rate at f � 34> is smaller than that at f � 024> "see Fig[



J[H[ Yan`\ S[L[ Lee : Int[ J[ Heat Mass Transfer 31 "0888# 1562Ð1570 1570

6#\ although both cases have the same e}ective thermal

conductivity kxx[ As a _nal note\ it is mentioned that the

heat transfer rate as shown in Fig[ 6 can be found to

have a variation "qmax:qmin−0# of more than 099)[ This

implies that the anisotropy of an anisotropic porous

media should not be ignored[

4[ Conclusion

A bank of circular cylinders is treated as an anisotropic

porous medium to investigate the e}ect of anisotropy on

~uid ~ow and heat transfer in anisotropic porous media[

The DarcyÐForchheimer drag and the e}ective thermal

conductivity in the principal axes are determined numeri!

cally by using the weighting function scheme along with

the NAPPLE algorithm[ Modelling of the Darcy drag

and the e}ective thermal conductivity then is derived

from the numerical results[ Based on the modelling\ ~uid

~ow and heat transfer for a forced ~ow as well as a

natural convection through a bank of circular cylinders

are solved[

The solutions show that in the forced ~ow case an

inclination of acute angle f has a smaller upstream heat

conduction and thus a larger heat transfer rate q as com!

pared to the inclination angle "079>−f#[ As expected\

the function q"f# becomes symmetrical with respect to

f � 89> when the Reynolds number is su.ciently large

such that the forced convection dominates the heat trans!

fer[ Nevertheless\ an increase in the Reynolds number

enhances the variation on the function q"f#[

In the natural convection case\ the strongest circulating

~ow occurs at the particular inclination angle of f � 34>

due to the smallest DarcyÐForchheimer drag[ The hori!

zontal cylinders in the case of f � 9> "also 079># make

good {bridge| for the heat ~ow from the hot wall to the

cold wall\ and thus have a good heat transfer rate[ The

solutions reveal also that due to a strong circulation ~ow

the inclination angle of f � 34> gives rise to a small

temperature gradient "−1u:1x# on the vertical walls and

thus poses a small heat transfer rate[ The inclination

angle is found to have an in~uence of more than one

hundred percent on the heat transfer rate[ Hence\ the

anisotropy of an anisotropic porous medium could be

always very important for either forced ~ow or natural

convection[
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